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the zeroth solution of system (5.1). The theorem is proved.

Example 4. Let the determine the conditions of asymptotic stability as a whole of the
zeroth solution of system

azy = ay®® + ANz + etz 4 GramaZs®

T 1M Ty T 10 2 12 (5.9)
dz.

—d% = ann®y® + ount ¥ + aniz? 4 aamae®

The derivative with respect to time t of the quadratic form with constant real coeffic-
ients : ;
v {zy, 2q) = —Yy Upnz1 + P12 T+ (Peeza)®), Pk 0, puF0

is, by virtue of system (5.9), a fourth-power form of the variables 4,7, i.e.

% = Apnzt + Anur®zy + Amany?zet + Anpnnize® 4 Apsr ¢ (5.10)
Aun = —pn’tiyy — PuPiefam (5.11)
Auys = —puoims — PuPufun — PuPibanz — (P1a* + Pa®) nu

A11s = —Pn’angs — PuPisfina — PuPubaas — (P1s* + Pad®) Gans

Ajass = —P1*01am — PuiP1s8nss — PuP1afsass — (Pra’ + paat) ape

Agazs = —puPisdisss — (Pis® + Paad) asas

In accordance with Theorem 4 the suff1c1ent conditions of asymptotic stabhility as a whole

of the zeroth solution of system (5.1) are the existence of real numbers pn#0, P1as sy =~ 0 and
numbers Ogyag 811 F 0 813, @13, @20 5= 0, agy, ags 5= 0, which satisfy (4.3) and (5.11).

v Min Ao c +ha 1 FE£3 e A 4 £ atalhd T ity ae o whala A8 Slha o~
Dy Thedrem -, tae :ua..n.a.\.a.cuu conaliiions Ior a.ajmy\.\u..l.\. a\-nua.;d.\_y as & wuu;c UJ. L.uc zeroth

solution of (5.1) is the existence of a real solutien py =0, P12 Pas 0, by 5 0, byyy, bigs, bayg 3 0, byy,,
bye= 0 of the system of algebraic equations (4.7) and (5.11).

Note that the application of the sufficient conditions for a form of even power to be of
fixed sign, based onthe Sylvester criterion for quadratic forms to be of fixed sign /1/, leads
to the derivation of the sufficient conditions for asymptotic stability as a whole of the zeroth
solution of system (5.1) in the form of inequalities for the Sylvester determinants /1/.
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ON THE STABILITY OF INVARIANT MANIFOLDS OF MECHANICAL SYSTEMS™
V.D. IRTEGOV

The stability of degenerate invariant manif

8 ©I sSteady moLions oI
is

olds
mechanical systems imbedded in one another /1/ i lnvestigated using
Liapunov's second method.

1. Statement of the problem. problems of the separation and qualitative investiga-
tion of invariant manifolds of the steady motions of autonomous differential equations of
mechanical systems

2y =X (@, Zyy - ), i=1,2, ..., n (1.1)
with smooth right sides in U C R", generated by their first inegrals
VO (Ilv CEEREEY In) = Cop Vl (Ih o« oy In) =Chy - Vm (xlv o ey In) =Cmn (1.2)

which are also assumed to be autonomous and smooth (even analytic) in the respective region
Vc UcCc R* are considered.
Let us set up the "complete” integral of system (l.1l)
K = }\.ovo (I\) 'f‘ ;\'lVl (I) + ... A.,,.V'm ( )
It is always possible to assume one of the quantities JA; = const in K to be unity. Hence-
forth, we will assume Ao = 1, since in a general consideration it is not necessary to analyse
*prikl.Matem.Mekhan.,48,3,348-355,1984
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the case iy =0 specifically. The equations that, together with (1.2), define sets of in-
variant manifolds of system (1l.1) corresponding to the integral K are

yizaK/azi=fi(Il, .. .‘zn,kl, ...,}um)=oyi=1v 2, ..
The Jacobi matrix of the transformation from x to y has the form
J = dyydz;|| = || °K/0z .0z, ||

Henceforth, we shall consider those sets of invariant manifolds, defined by (1.3) and
(1.2), on which

Lon (1.2

det J =D (21, ..., Ty A1, -+, Ap) =0 (1.4)

Definition 1. The invariant manifolds determined by K are called degenerate if on them
det J = 0.

Let a certain degenerate set of invariant manifolds of system (l.l) defined for k< n
irrespective of x, by the equations from (1.3)

n=fHh@En, ..o 2 M ..., A)=0 ... (1.%)
Ye =fe (@1, o oy Zny A, oL L A) =0

is given, and are parametrized by the quantities Ay ..., A; remaining in (1.3), after appropr-
iate allowance for condition (l1.4). We select a part of coordinates z;as the variables on
manifold (1.5) with fixed Ay, ..., h,.Generally, one these sets may be insufficient to define
the entire manifold. We shall then use several such sets in corresponding charts /2/. In
each chart, for instance, the chart with coordinates ZIi, .. ., Znk, we can determine the vector
field generated on the respective manifold, using the input equations (1.1l)

2y = X; (@1 oo s Tnogs My i) j=1,2,...,n—k

We can also write the contraction of integrals (1.2) for this field for a given selection
of the independent variables

Vo (@i, ++ oy Tpegs Moo b)) =g oo o, Vil o o) Zpags
Moo ah) =¢

which, as a rule, is less than m + 1.
In other charts we similarly obtain equations of the form

zi, = Xi, (Tiy ceer Ty g Ay eees Agdy o eey (L.6)

T, = Xin—k (li‘. e Ty o Ap et }\.f)

and the respective integrals

VolZip ..+ Tipi? Ay oo hgy=cor .. s V(@i .. 0 i l e M) =g¢ (1L.7)

The transformations of the transition from a chart to a chart of corresponding smoothness
must, of course, also be determined.

The above discussion enables us to state the problem of finding the sets of invariant mani-
folds of second-level steady motions generated on the manifold (1.5) in each chart by the
integrals (1.7) of Egqs.(l.6), using the same scheme as for Egs.(l.l) and (1.2). Continuing
this process, we obtain invariant manifolds of the third and higher level. This enables the
steady motions to be classified by the imbedding and degree of degeneration. This classifica-
tion is similar to, Thom's classification of mapping singularities /3/.

Let us consider the question of the steady-motion stability of manifolds of various levels,
separated by the method indicated above. It is reasonable to obtain here the sufficient
conditions for stability on the basis of the theorems in /4, 5/, using the first integrals
of the problem as the Liapunov functions.

We shall specify the concepts that will be necessary subsequently. Let the input degen-

erate set of steady motions in the envelopingspace be defined by system (1.5). We introduce
deviations from the manifold (1.5), using the variables Y1, ..., Yk which will be further
called coordinates "normal" to the manifold. Selecting in each chart Zipy -« v Fipgr Y1 - o o0 i
as variables, we write the equations of perturbed motion obtained from (l.l) in the form
=YY 1 Yo Tigr + o -3 Tip e Ay veer M) (1.8)
Y=Y -1 P> Tiwr + - -1 Tig_gr Mo« o0 Ap)
Tiy == Xy (Y1 v o v Yioo iy - <> Tipp_ A oooo Ag)
x;n_k =X W oo Yo Tiw -1 T Ay oo Ag)
which when y; = ...=y, =0 become system (1.6) which determines the motions on manifold (1.5)

on the selected chart.
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Let the input system (1.1) have as the first integral
Vizy, o+ o0y Zny A) =¢

which in one of the charts in coordinates iy - .« Ziy_4» Y1, + . ., Y» takes the form
Vs ooos Wi My oo s M) = (1.9)
Obviously, in any other chart the .form of integral (1.9) does not, generally, change,
since passing from one chart to another reduces to replacing the variables z;, ..., zh_k,which
do not occur in (1.9), by the variables Zjm «-. . Tj -
If integral (1.9) is of fixed sign with respect to 41, ..., ¥y when Aty -« - Ay from some

set, then on the basis of the slightly modified Rumyantsev's theorem /5/, we can conclude that
part of our set (1.5) (or the whole set) of manifolds is stable in the sense of the following
definition.

Definition 2. A manifold is stable, if for any fairly small & >0 there exists a
8() >0 such that only at the initial instant of time ¢ =1¢;, for any chart

Ny () Il < 8 (1.10)
then for all t>>1t, and any chart and along any trajectory that satisfies when ¢ ={, the

condition (1.10), |y ()]|< e. Here | -|| is the norm of (y% ~+ yo* + ... + yx?)'", or any equival-
ent to it over all coordinates normal to the manifold.

Remark. It is always possible to treat |y| as the distance between the manifold (1.5)
and a point of phase space. Hence Definition 2 is the condition of stability of the set
formulated in coordinate form /6, 7/.

In a number of problems of solid body dynamics the situation arises when the system of
equations of the type of (1.8) admits of a general integral of the form

V@i oo Tig o Y1 - Yo e M) =c =1 (1.11)

whose constant is fixed by some (let us say, geometrical) oonsiderations. If the integral
(1.11) is in the bundle of K integrals that generate the set (1.5), then formula (1.11) fol-
lows from the totality of steady motions on (1.5), which is a certain submanifold.

It is often convenient to pose the guestion of the stability of the complete set of mani-
folds (1.5), having in view that the submanifold (1.ll) separated in (l1.5) inherits the
stability of the enveloping manifold.

Consider one more possible formulation of the stability problem involving the integral
(1.11).

Definition 3. The parametrized set of invariant manifolds (l1.5) of the totality of
systems (1.8) with integral (1.1ll) admits of a subset with motions arbitrarily close to zero
with respect to the variables z;,, =z, if for any arbitrarily small |z,°|,. .., | z,°[there exists
AM% ..., A" such that
'zin-k’ 0,...,0;7»1°,...,l.,°)=1

o B
V(l‘{,v P ).Iidy xid+19 “en

Definition 4. The parametrized set of manifolds (1.5) of the totality of systems (1.8)
with the integral (1.11) admits a stable subset of manifolds with motions that remain arbitr-
arily close to zero with respect to the variables %, -.., %4, ifthe following conditions
are satisfied.

1©¢. Systems (1.8) with the integral (1.11l) admit of the subset of a family of manifolds
(1.5) with properties outlined in Definition 3.

2°. For any e>0 we can find &;(e) >0, §,(e) >0 such that if

d k
ng szj (to) < 61| i§1 yiz (to) < 6’

then
d k
DO+ Jure<e
=1 {=1

with an appropriate selection of A% ..., A° from some set for all ¢>>¢,.

To obtain the sufficient conditions of existence in the system of a subset of invariant
manifolds with properties indicated in Definition 4, the theorems, which are a slight modifica-
tion of theorems in /5/ on the stability with respect to a part of the variables, can be used.
The following statement will be sufficient subsequently. If Egs.(l1.8) of perturbed motion
with integral (1.11) admit of in the respective charts the integral

W(Iin v ey Iid’ Uiy o« o5 Yi» A‘lv .« e oey 7"!)

which is of fixed sign with respect to the variables yi, -« .y Yur iy + » «» Tiy for values Ay, ...,
A from the set, where the properties postulated in Definition 3 are realized, the system



252

has a subset of manifolds with properties postulated by Definition 4.
The proof of this statement follows the standard scheme of proof of theorems on stability
in Liapunov's second method.

2. Invariant manifolds of the Kovalevskaya top. Let us consider some examples
of stability investigations of degenerate invariant manifolds of steady motions in the dynamics
of a solid. Let the mass distribution of the body with a fixed point satisfy the Kovalevskaya
conditions (4 = B = 2C, z,5% 0, y, = 2, = 0). The Kovalevskaya integral /8/

=(p* — ¢ — zv1)* + (Qpg — zo¥,)* = &P
generates in this case an invariant manifold of the Delaunay steady motions which is defined
in the phase space of the system by two equations
n=p —¢ —am=0 y=2p0—x%, =0 (2.1

and has, therefore, a degree of degeneration of four. The initial Euler-Poisson differential
equations in this problem for such manifold give the following equations of perturbed motion:

2p" =gr, 2 =—7p + zoy3, T = Y3 — 2pq (2.2)
vy = —[g (0* + ) + qur — pylize, W' =TYe ¥’ = —rin

which, when y1 =y, =0 , define a vector field on the manifold (2.1) itself

2p" =gqr, 2 = —rp +zivs, T = —2p¢, ¥ = —q (P + ¢))/xe (2.3)
The latter admit of the integrals

2H = 4p* +1r2 =2h, Vy=ry; +2p (P* + ¢®zo=m (2.4
Va=19s+ @+ @iz =1

which are a contraction onto the set of Delaunay motions of the classic integrals of the
Kovalevskaya problem /9/. The total integral
K=H —wW, — 1wV,
of Egs.(23) formed from expressions (2.4), generates invariant manifolds of steady motions
of the second level that lie on the set (2.1).
among the second level manifolds generated by K, we note the following:
"pendulum oscillations” around the horizontal y axis

4p=0,r=0, vy =v, =0 (2.5)
that are defined by the differential equations
2¢ = 243 Vs = — /7
and the motions which lie on the one-parameter set defined by the equations
2vizp — VIR (PP + ¢ =0, r—viy3 =0, i + v, =0 (2.6)

Since a unique system of coordinates cannot be introduced on this cylindrical surface,
it is reasonable to use several such sets when v; %0 and wvz, >0

1°. r, p; 0 < p < 2zg/v1, 0 <L g < Zy/v1, ¢ = P (2.7
2.1, py 0 p <L 2/, —zo/n1 K90, g =—F
F. 1 g —zov < g <ao/vn Tl <P 2o/ p==+Q

&, 1, q; —xofvi < g < Zo/vir 0 p<Zo/V1r =-z:——'o
= (22— p)" 0=(35 o))
(P=(2—r)" 0=(3x
The situtation in the case 0f wx,< 0 is exactly the same.

In each of the charts (2.7) on manifolds (2.6) we use Egs.(2.3) to define the vector
field

1°. 2p" = rP, r = —2pP (2.8)
2°. 2p" = —rP, r" = 2pP

¥ 2 =—rQ, r'=—2q<% +Q)

£, 24 =rQ, r'=-—2q(%-— )

For the first two charts the vector field admits of the first integral
4p? + 12 = vp? (2.9)
which in the third and fourth charts takes the form
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S(E o) +r=w (2.10)
4(—11— >2+r’=v1” (2.11)

Vi
respectively. The integral (2.9), (2.10), and (2.11) are of type (1.11) for each fixed W% .
It may also be used to determine the manifolds of the third level steady motions that lie on
(2.6) .
In the third chart the integral (2.10) generates as the third-level manifold, the perman-
ent rotatiocn

r=q=0(p=-2:T°=VTz:, vl..—.ZV-E) (2.12)

where the parameter v; is determined after substituting the solution into integral (2.10).
In the fourth chart the third level solution could have been
r=¢g=0 (p=0)
but it does not satisfy integral (2.10) when substituted into it, when wv; 50 and, consequ-
ently, is not a steady motion.
We revert now to the analysis of the system of equations of invariant manifolds that are
cut out by integrals (2.9), (2.10), and (2.1l1) on the surface (2.6) (v;z, > 0). It can be seen

that for each fixed Vi > 21/5; the intersection of the two cylinders (2.6) and (2.9) defines

two trajectories that envelop the first of them; v, = 21/1—0 corresponds to two separatrix
curves that adjoin the permanent rotation (2.12) at both ends; finally, when "0 <wv;< 2V z,
we obtain closed curves that lie on surface (2:6) and contain the point p =g¢=r =0. When
v; = 0 the manifold (2.6) becomes degenerate and we obtain here, as the limit of an invariant
manifold, a set of pendulum oscillations (2.5).

Questions of singularities of families of sets of steady motions with respect to the
parameters are not considered here.

3. Stability. Let us now investigate the sets of steady motions described above.
Equations (2.2) admit of the first integral /8/
AV, =y + 12 >0
and, conseqguently, the whole manifold of the Delaunay steady motions is stable in the system
phase space.

We shall consider the question of the stability of the parametrized system of manifolds
defined by Egs. (2.6) relative to the Delaunay motions. Introducing the "normal coordinates”
21 = 2pzy — V1 (P + ¢%), 2z, =1 — viy,

we write the perturbed motion of this set relative to the manifold (2.1), using all four

charts on (2.6). Thus, the necessary equations in the fourth chart have the form
= = — 2 (2 —
2y =2Zoq29y I = 2(;(vl ) (3.1)
2 = —q2y/%oy 29 =— % +rR

R = [(@o/v1)* — ¢ — (@/v))}"
Similar equations also occur in the three remaining charts.
A simple check will show that Egs. (3.1) admit of the integral

2AK = 2,2 + z%z,?

which obviously occurs in the remaining charts also. It enables us to conclude that the
manifold (2.6) is stable relative to the Delaunay motions.

Since the real set (2.6), (2.9) differs from (2.6) only by the setting of the constant
of the integral of cosines, this parametrized manifold is also stable with respect to the
variables z1 and 3z, relative to the Delaunay motions for any positive parameter v,z 0.

Note that the equations of perturbed motion in the fourth chart (3.1) admit of the
following two integrals:

AV3=L?";:E%‘)‘+%=1 (3.2)
1 3
AW=zz’-%-?‘Zs+--r§--i-%‘,T-f-lip2 (3.3)

It follows directly from (3.2) that for z1 =32, = ( and any arbitrarily small |p°|and

[r°] , it is always possible by a proper selection of v;° to satisfy the relation
4p02/v1:>2 + roz/vloz =1 (p —_ (Io/vl) -— O)
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i.e. here the conditions of Definition 3 for small |p°| and |7 are satisfied on manifeld (2.5

The integral (3.3) is of fixed sign with respect to the variables ;. 2., p.r for any
vy > 0. We may, thus, speak of the stability of part of the set of manifolds (2.6) and (2.1l
with small motions with respect p and r for a proper selection of the parameter v,° in the
sense of Definition 4.

Let us also consider the stability of the invariant manifold of pendulum oscillations of
the body (2.5) relative to the Delaunay manifold. Here the equations of perturbed motion are
the same as the equations of motion on the Delaunay manifold (2.3). The variables p and r
here play the part of coordinates normal to the manifold (2.5). Wwhen p=r=0 , we obtain
from Egs.(2.3) the vector field on the set of pendulum oscillations (2.5).

Equations (2.3) admit of the first integral

H = 2p® — r¥/2
which is of fixed sign with respect to normal coordinates. The stability of the set of motions
(2.5) relative to the Delaunay manifold follows from this formula. Note that the limit mani-
fold (2.5) for the stable set (2.6) is also stable.

Finally, let us consider the question of when it is possible to conclude from the stabil-
ity of a lower level manifold and the stability in it of a higher level manifold, that the
latter is stable in the initial phase space.

Definition 5. A second level manifold is stable in the phase space of the system, if it
is stable with respect to normal coordinates of the first and second levels.

Let us restrict the problem to the spécific example of obtaining the sufficient conditions
of such stability, using Lyapunov's function in the form of a bundle of first integrals.

Consider the stability of pendulum oscillations (2.5) in the phase space of a solid. We
write the equations of perturbed motion of the problem, using the normal coordinates of mani-
fold (2.5) in the Delaunay manifold (p,r) and the normal coordinates (y, y,) of the Delaunay
manifold in phase space. The necessary equations are obtained from the Euler-Poisson equa-
tions of the initial Kovalevskaya problem in the form

. . . . 12}
Y= rys, ¥a = —ryn 2p = gqr, 20 = —rp + Zo¥; (3.4)
r= —2pg+ ya s = — lg (P + ¢® + qu — pyslize
Here, the unperturbed solution is p=r=y =y, =0, with the vector field in it
29" = ZoVs, Ya = —9%zy
As was shown above, Egs.(3.4) admit of the integrals
AVy =y + y?, 28H = 4p* +1r* — 2y, (3.5)

The last integral is the perturbation of the first integral (2.4), when the Delaunay
manifold is varied.
It is seen that from the integrals (3.5) it is possible to form the bundle

L= AH? — 2BV, = Yy (4p? 4+ 2 — 29)2 — % (9% + 4,2)

which, when x<« —1, 1is a positive-definite function with respect tc all normal coordinates
of (3.4).

It is, thus, possible to draw conclusions regarding the stability of pendulum oscilla-
tions of a body (2.5) in phase space, using the slightly modified Rumyantsev theorem.
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