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the zeroth solution of system (5.1). The theorem is proved. 

Example 4. Let the determine the conditions of asymptotic stability as a whole of the 
zeroth solution of system 

dtl _ x - %lld $ a111pzl% + %lzl~%~+ %%&a= (5.9) 

dzz _ x - olmt1J + alllfl% + ~:x2w-r2+ ~.T-1~2 

The derivative with respect to time t of the quadratic form with constant real coeffic- 
ients 

" (ta. 1,) = --'I, I(p+1 + Pld i h4’L Pll + 0. Par + 0 

is, by virtue of system (5.9), a fourth-power form of the variables rl,+, i.e. 

dv 
- &,~I'+ A,,12 5-- 

I I "2.3 + A,II,zI'Q+ &sv2i- ABLS'E d (5.10) 

A 1111 = -P&nn - PllPlAlll (5.11) 
A UII = -Pll”mr - P11P,1%111 - PIlPlt~lll2 - b1r’ + Pm’) %ll 

Au,, = -~l,‘“n,, - ~11~1r’nlr - ~11~1,oIua - (pm* + pan’) “ms 

A 1111 = -Pll’“l**. - P1lPlAl, - Pdw4rn - w + Ptf) 41.w 

Ax, = -P1lPla%m - (Pn’ + PA %IIl 

In accordance with Theorem 4 the Sufficient conditions of asymptotic stability as a whole 
of the zeroth solution of system (5.1) ke the existence of real numbers ~~~#O,pl,,p,,+o and 
numbers qll9,% # 0, %, %a~ %r#O,a,,,cr,l#O,which satisfy (4.3) and (5.11). 

By Theorem 5, the sufficient conditions for asymptotic stability as a whole of the zeroth 
solution of (5.1) is the existence of a real solution P~~#%P~~~Pss# 0, hi 0, h,b, b,,,# 0. b,,, 

b,,,+O of the system of algebraic equations (4.7) and (5.11). 
Note that the application of the sufficient conditions for a form of even power to be of 

fixed sign, basedonthe Sylvester criterion for quadratic forms to be of fixed sign /l/, leads 
to the derivation of the sufficient conditions for asymptotic stability as a whole of the zeroth 
solution of system (5.1) in the form of inequalities for the Sylvester determinants /l/. 
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ON THE STABILITY OF INVARIANT MANIFOLDS OF MECHANICAL SYSTEMS* 

V.D. IRTEGOV 

The stability of degenerate invariant manifolds of steady motions of 
mechanical systems imbedded in one another /l/ is investigated using 
Liapunov's second method. 

1. Statement of the problem. Problems of the separation and qualitative investiga- 
tion of invariant manifolds of the steady motions of autonomous differential equations of 
mechanical systems 

zi' = X1 (q, z2, . . ., z,), i = 1, 2, . . ., n (1.1) 

with smooth right sides in UCR", generated by their first inegrals 

v, 6%. . . ., 2,) = co7 VI (21, . . ., t*) = Cl, . . ., v, (21. . a .( 5,) = c, (1.2) 

which are also assumed to be autonomous and smooth (even analytic) in the respective region 
VcUcR” are considered. 

Let us set up the "complete" integral of system (1.1) 

R = hoVo (2) + hlV1 (z) + . . f t a,v, (2) 

It is always possible to assume one of the quantities hj = const in K to be unity. Bence- 
forth, we will assume XII = 1, since in a general consideration it is not necessary to analyse 
*Prik;.Matem_Mekhan.,48,3,348-355,1984 
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the case h, = 0 specifically. The equations that, together with (1.2), define sets of in- 
variant manifolds of system (1.1) corresponding to the integral .K are 

Yi = aKiaXi = fi (51, ., Z,, 11, . . ., h,) = 0, i = 1, 2, . . ,, n (1.2) 
The Jacobi matrix of the transformation from x to y has the form 

J = 11 dyi/dxj 11 = I/ ~2K/c3xidx,(~ 

Henceforth, we shall consider those sets of invariant manifolds, defined by (1.3) and 
(1.2), on which 

det J = 0 (I~. . . ., I,,, hl, . . ., h,) = 0 (1.4) 

Definition 1. The invariant manifolds determined by K are called degenerate if on them 
det J = 0. 

Letacertain degenerate set of invariant manifolds of system (1.1) defined for k<n 
irrespective of x, by the equations from (1.3) 

Yl = fl (Xl, . ., xn, L, . ., h,) = 0. . ., Cl.51 
yk = fk (Xl, . . ., xn, hl, . . ., h,) = 0 

is given, and are parametrized by the quantities hl, . . . . h, remaining in (1.3), after appropr- 
iate allowance for condition (1.4). We select a part of coordinates zias the variables on 
manifold (1.5) with fixed kl, . . . . it,.Generally, one these sets may be insufficient to define 
the entire manifold. We shall then use several such sets in corresponding charts /2/. In 
each chart, for instan'ce, the chart with coordinates xl,. . ..x,-k, we can determine the vector 
field generated on the respective manifold, using the input equations (1.1) 

xj' = xj (x1, . . ., z,.,, 11, . ., h,); j = 1, 2, ., n - k 

We can also write the contraction of integrals (1.2) for this field for a given selection 
of the independent variables 

v, (r1, ., 2;1-k, h, . ., n,) = CO, . . ., vl(xI, . . . . I,,+, 
hl, ., h,) = Cl 

which, as a rule, is less than m + 1. 
In other charts we similarly obtain equations of the form 

Xi,’ = Xi, (Xi** . * e 1 Xi,_kl hlv . . . 9 hj), * * * 9 

Xi n-k 
= xin_k (Xii, . . . 9 Xi,_k’ hl, . . . ? h,) 

and the respective integrals 

(1.6) 

Vo(q,, . . . , xi,_k’ al, . . . 1 at)= cm , Vl(S,, . . , Xin_k’ k,, . . . 3 hf) = Cl (1.7) 

The transformations of the transition from a chart to a chart of corresponding smoothness 
must, of course, also be determined. 

The above discussion enables us to state the problem of finding the sets of invariant mani- 
folds of second-level steady motions generated on the manifold (1.5) in each chart by the 
integrals (1.7) of Eqs.(l.G), using the same scheme as for Eqs.cl.1) and (1.2). Continuing 
this process, we obtain invariant manifolds of the third and higher level. This enables the 
steady motions to be classified by the imbedding and degree of degeneration. This classifica- 
tion is similar to, Thorn's classification of mapping singularities /3/. 

Let us consider the question of the steady-motion stability of manifolds of various levels, 
separated by the method indicated above. It is reasonable to obtain here the sufficient 
conditions for stability on the basis of the theorems in /4, 5/, using the first integrals 
of the problem as the Liapunov functions. 

We shall specify the concepts that will be necessary subsequently. Let the input degen- 
erate set of steady motions in theenvelopingspace be defined by system (1.5). We introduce 
deviations from the manifold (1.5), using the Variables Yl, . . ., Yk which will be further 
tailed coordinates "normal" to the manifold. Selecting in each chart mil+ . .( Xi,_ky YIP . . .? yk 
as variables, we write the equations of perturbed motion obtained from (1.1) in the form 

Y; = Y, (Yl, . . . > Y,, Zi,, . . . 1 &,,_a Al* . . * 1 ‘d (1.8) 
,,........................ 

Yk’ = Yk (Ylt . . . t Ykt Iitr . . 9 zi,,_k* hl, . . . 1 ‘f) 

Zi,’ = X,, (YIV . . ( YkP 5inl . . T Xxn_k7 Al, . . . 7 hf) 

., ., . . . . . . . . . . . . . . . . . 
X;n_k = Xi,k (Ylt . . t Ykt Xi,, . . . T Xi,,_kt kl* . 9 ‘!) 

which when yl = . . . = y, = 0 become system (1.6) which determines the motions on manifold (1.5) 
on the selected chart. 
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Let the input system (1.1) have as the first integral 

V (Jr. . . ., 2,, h) = c 
which in one of the charts in coordinates xii, ...,ri,_kt Yr, . . . . yk takes the form 

J' (Yl, . . ., YA.7 $, . . ., h,) = c (1.9) 

Obviously, in any other chart the form of integral (1.9) does not, generally, change, 
since passing from one chart to another reduces to replacing the variables xi,, . . . . ri,_,,which 
do not occur in (1.9), by the variables Zj*v a * .? Ijn_k- 

If integral (1.9) is of fixed sign with respect to Yr, . . ..y. when &,...,h, from some 
set, then on the basis of the slightly modified Rumyantsev's theorem /5/, we can conclude that 
part of our set (1.5) (or the whole set) of manifolds is stable in the sense of the following 
definition. 

Definition 2. A manifold is stable, if for any fairly small s>O there exists a 
6 (e)> 0 such that only at the initial instant of time 1 = t, for any chart 

II Y (Ll) II < 6 (1.10) 

then for all t> t, and any chart and along any trajectory that satisfies when t = t, the 

condition (l.lO), 1) y (t)II < E. Here 11 . 11 is the norm of (Y2r + yza i- . . . + yka)l/*,or any equival- 

ent to it over all coordinates normal to the manifold. 

Remark. It is always possible to treat I/y11 as the distance between the manifold (1.5) 
and a point of phase space. Hence Definition 2 is the condition of stability of the set 
formulated in coordinate form /6, ?/. 

In a number of problems of solid body dynamics the situation arises when the system of 
equations of the type of (1.8) admits of a general integral of the form 

v CL . . ., qn_p y,, . . ., y*r h, . * *, a,) = c = 1 (1.11) 

whose constant is fixed by some (let us say, geometrical) oonsiderations. If the integral 
(1.11) is in the bundle of K integrals that generate the set (l.Sj, then formula (1.11) fol- 
lows from the totality of steady motions on (1.5), which is a certain submanifold. 

It is often convenient to pose the question of the stability of the complete set of mani- 
folds (1.5j, having in view that the submanifold (1.11) separated in (1.5) inherits the 
stability of the enveloping manifold. 

Consider one more possible formulation of the stability problem involving the integral 
(1.11). 

Definition 3. The parametrized set of invariant manifolds (1.5) of the totality of 
systems (1.8) with integral (1.11) admits of a subset with motions arbitrarily close to zero 
with respect to the variables silr 
hr', . . . . lip such that 

zi,,if for any arbitrarily small ItiPIr..., 1 zidDlthere exists 

V(4,, . . . ,.5;d1 2id+l’ . . . , 2Qk, 0, . . . , oi h,“, . . . I h,O)= 1 

Definition 4. The parametrized set of manifolds (1.5) of the totality of systems (1.8j 
with the integral (1.113 admits a stable subset of manifolds with motions that remain arbitr- 
arily close to zero with respect to the variables z,, - .., zi, , ifthe following conditions 
are satisfied. 

lo. Systems (1.8) with the integral (1.11) admit of the subset of a family of manifolds 
(1.5) with properties outlined in Definition 3. 

2O. For any e> 0 we can find S,(e)> 0, 6,(e)> 0 such that if 

then 

with an appropriate selection of hr“, . . . . A,? from some set for all t> t,. 

To obtain the sufficient conditions of existence in the system of a subset of invariant 
manifolds with properties indicated in Definition 4, the theorems, which are a slight modifica- 
tion of theorems in /5/ on the stability with respect to a part of the variables, can be used. 
The following statement will be sufficient subsequently. If Eqs.(l.Ej of perturbed motion 
with integral (1.11) admit of in the respective charts the integral 

w (s,,, * . ., Zid' Yl, . . ., Yk, Al, . . ., n,) 

which is of fixed sign with respect to the variables yr. _.., yk, z,,, . . ..Zi., for values k, . . ., 
4 from the set, where the properties postulated in Definition 3 are realized, the system 
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has a subset of manifolds with properties postulated by Definition 4. 
The proof of this statement follows the standard scheme of proof of theorems on stability 

in Liapunov's second method. 

2. Invariant manifolds of the Kovalevskaya top. Let us consider some examples 
of stability investigations of degenerate invariant manifolds of steady motions in the dynamics 
of a solid. Let the mass distribution of the body with a fixed point satisfy the Kovalevskaya 
conditions (A = B = ZC, z,#O, y, = z, = O).The Kovalevskaya integral /S/ 

v, = @" - 42 - z,y,)2 + (Zpq - zoy2)* = k2 

generates in this case an invariant manifold of the Delaunay steady motions which is defined 
in the phase space of the system by two equations 

y, = p2 - 42 - “o-f1 = 0, y, = 2pq - xoys = 0 (2.1) 

and has, therefore, a degree of degeneration of four. The initial Euler-Poisson differential 
equations in this problem for such manifold give the following equations of perturbed motion: 

2p’ = qr, 2q’ =-rp + xoys, r’ = yp - 2pq (2.2) 

YJ’ = -[q @’ + 9’) + qy1 - PY,l/% Yl’ = TY,l Y,’ = --rY1 

which, when yl =y* = 0 , define a vector field on the manifold (2.1) itself 

2p’ = qr, 2q’ = -rp + x,y,, r’ = -2pq, h’ = -q @’ + qz)/xo 

The latter admit of the integrals 

(2.3) 

2H = 4pa + 9 = 2h, V, = ry3 + 2p (p” + qa)/x, = m 

v3 = ys2 + (p” + qZ)/xoa = 1 

(2.4) 

which are a contraction onto the set of Delaunay motions of the classic integrals of the 
Kovalevskaya problem /g/. The total integral 

K = H - vlV, - ‘/gaV, 

of Eqs.(23) formed from expressions (Z-4), generates invariant manifolds of steady motions 
of the second level that lie on the set (2.1) . 

Among the second level manifolds generated by K, we note the following: 
"pendulum oscillations" around the horizontal y axis 

4p = 0, r = 0, vI = vI = 0 (2.51 

that are defined by the differential equations 

2q' = roy3, 73' = -p"/% 

and the motions which lie on the one-parameter set defined by the equations 

2W,P - via (p2 + 42) = 0, r - vly3 = 0, v12 + v2 = 0 (2.6) 

Since a unique system of coordinates cannot be introduced on this cylindrical surface, 
it is reasonable to use several such sets when vr#O and v&l > 0 

1". r, p; 0 < p < 2z,/v1, 0 < q < X0/W, Q = P (2.71 

2”. r, p; 0 < p < 2xo/v1, -x0/w < 4 < 0, q = -pl 

3”. r, q; - x0/~ <q < xo/w xotvl < P < 2~oh P = ff + Q 

4”. r, q; - xoivl < q < xoh 0 < P <xohr P = $ - Q 

(p z(++)“‘, Q=($ eqz)-) 

The situtation in the case Of vIr,< 0 is exactly the 
In each of the charts (2.7) on manifolds (2.6) we use 

field 
1". 2p’ = rP, r’ = -2pP 

2”. 2p’ = -rP, r’ = 2pP 

3”. 2q’ = - rQ, r’ = - 2q (+ 

4”. 2q’ = rQ, r’= - 2q($- 

For the first two charts the vector field admits of 
4pz + r2 = v12 

which in the third and fourth charts takes the form 

+ 

same. 
Eqs.CZ.3) to define the vector 

(2.6) 

Q) 
Qi 
the first integral 

(2.9) 
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(2.10) 

respectively. The integral (2.9), (2.10), and (2.11) are of type (1.113 for each fixed vr* . 
It may also be used to determine the manifolds of the third level steady motions that lie on 
(2.6). 

In the third chart the integral (2.10) generates as the third-level manifold, the perman- 
ent rotation 

(2.12) 

where the parameter ~1 is determined after substituting the solution into integral (2.10). 
In the fourth chart the third level solution could have been 

r=fJ=O (p=O) 

but it does not satisfy integral (2.10) when substituted into it, when vl#O and, consequ- 
ently, is not a steady motion. 

We revert now to the analysis of the system of equations of invariant manifolds that are 
cut out by integrals (2.9), (2.10), and (2.11) on the surface (2.6) (vrzO> 0). It can be seen 

that for each fixed V1>21/s, the intersection of the two cylinders (2.6) and (2.9) defines 

two trajectories that envelop the first of them; VI =27/G corresponds to two separatrix 
curves that adjoin the permanent rotation (2.12) at both ends; finally, when .O<v1<21/t, 
we obtain closed curves that lie on surface (2.6) and contain the point p = q = r = 0, When 
v1 = 0 the manifold (2.6) becomes degenerate and we obtain here, as the limit of an invariant 
manifold, a set of pendulum oscillations (2.5). 

Questions of singularities of families of sets of steady motions with respect to the 
parameters are not considered here. 

3. Stability. Let us now investigate the sets of steady motions described above. 
Equations (2.2) admit of the first integral /8/ 

AV, = Y,' + Y:>) 0 

and, consequently, the whole manifold of the Delaunay steady motions is stable in the system 
phase space. 

We shall consider the question of the stability of the parametrized system of manifolds 
defined by Eqs.(2.6) relative to the Delaunay motions. Introducing the "normal coordinates" 

zr = 2pzo - Vl (p” + qy, z* = r - vff, 

we write the perturbed motion of this set relative to the manifold (2.1), using all four 
charts on (2.6). Thus, the necessary equations in the fourth chart have the form 

21’ = &qz*, r-c-2q ( $4) (3.1) 

zi = - qzl/zo, 2q’ = - y $- rR 

R = [(zolv~)’ - P - (zdvdl” 

Similar equations also occur in the three remaining charts. 
A simple check will show that Eqs.(3.1) admit of the integral 

2AK = zso + zla/to2 

which obviously occurs in the remaining charts also. It enables us to conclude that the 
manifold (2.6) is stable relative to the Delaunay motions. 

Since the real set (2.6), (2.9) differs from (2.6) only by the setting of the constant 
of the integral of cosines, this parametrized manifold is also stable with respect to the 
variables zl and z2 relative to the Delaunay motions for any positive parameter Vl# 0. 

Note that the equations of perturbed motion in the fourth chart (3.1) admit of the 
following two integrals: 

AVa = (2Pz0 --da + &= 1 

d-9 Vl 

AW =zsz+ rzz +f + 2 + 4~' 

(3.2) 

(3.3) 

It follows directly from (3.2) that for zl = zI = 0 and any arbitrarily small lpOl and 

IrOI ’ it is always possible by a proper selection of ~1' to satisfy the relation 

4p”Vvloz + r”z/vl” = 1 (p = (z,/vl) - Q) 
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i.e. here the conditions of Definition 3 for small Ip'I and jr" are satisfied on manifold ::.-' . 
The integral (3.3) is of fixed sign with respect to the variables cl.zz,p.r for any 

'VI > 0. We may, thus, Speak Of the stability of part of the set cf manifolds (2.6) and (:.I:: 
with small motions with respect p and I for a proper selection of the parameter vl' 1.n the 
sense of Definition 4. 

Let us also consider the stability of the invariant manifold of pendulum oscillations of 
the body (2.5) relative to the Delaunay manifold. Here the equations of perturbed motion are 
the same as the equations of motion on the Delaunay manifold (2.3). The variables p and r 
here play the part of coordinates normal to the manifold (2.5). When p = r= 0 , we obtain 
from Eqs.(2.3) the vector field on the set of pendulum oscillations (2.5). 

Equations (2.3) admit of the first integral. 
H = 2p= - r2.'2 

which is of fixed sign with respect to normal coordinates. The stability of the set of motions 
(2.5) relative to the Delaunay manifold follows from this formula. Note that the limit mani- 
fold (2.5) forthe stable set (2.6) is also stable. 

Finally, let us consider the question of when it is possible to conclude from the stabil- 
ity of a lower level manifold and the stability in it of a higher level manifold, that the 
latter is stable in the initial phase space. 

Definition 5. A second level manifold is stable in the phase space of the system, if it 
is stable with respect to normal coordinates of the first and second levels. 

Let us restrict the problem to the specific example of obtaining the sufficient conditions 
of such stability, using Lyapunov's function in the form of a bundle of first integrals. 

Consider the stability of pendulum oscillations (2.5) in the phase space of a solid. We 
write the equations of perturbed motion of the problem, using the normal coordinates of mani- 
fold (2.5) in the Delaunay manifold (P,r) and the normal coordinates (y,,y,)of the Delaunay 
manifold in phase space. The necessary equations are obtained from the Euler-Poisson equa- 
tions of the initial Kovalevskaya problem in the form 

y,' = --'yl, 2p' = 4'. 21' = --'p + zoy3 
P~==~";dq + y5.9 Ys' = - [q (pa+ 49 + qY, - PYJl.0 

(3.4) 

Here, the unperturbed solution is P = r= y1 = y2 = 0 , with the vector field in it 

2q' = loY3, y3 = -q3.!z0 

As was shown above, Eqs.(3.4) admit of the integrals 

Ai', = Y,~ + yz*, 2AH = 4P2 + rz - 2Y, (3.5) 

The last integral is the perturbation of the first integral (2.4), when the Delaunay 
manifold is varied. 

It is seen that from the integrals (3.5) it is possible to form the bundle 

L = AH* - x6!', = '/a (lp2 + rz - ?yl)* - % (y,* + y,*) 

which, when x<--1, is a positive-definite function with respect to all normal coordinates 
of (3.4). 

It is, thus, possible to draw conclusions regarding the stability of pendulum oscilla- 
tions of a body (2.5) in phase space, using the slightly modified Rumyantsev theorem. 
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